Tag Archives: indoor air quality testing

Dallas Indoor Air Quality Testing 214.912.4691 – Radon, IAQ, Mold Inspection and Testing & Rapid Onsite Results

DAYS / HOURS OF OPERATION  (text to with inquiries – 24 / 7 but please include physical address, square footage and email)
7 Days a Week  8 AM – 8 PM   (Central Standard Time)

Dallas Indoor Air Quality Testing

P100 Respirator with 2091 Filters by 3M

214.912.4691 – Through years of performing environmental testing in the Dallas / Fort Worth – DFW Metroplex area, ScanTech has evaluated numerous risk factors that impact human health from the perspectives of both short term (acute effects) and long term (chronic health issues) impacts in the occupational health realm.

ScanTech can check for the following key indoor air quality level indicators (many with time-based datalogging available) and have a report for you at the time of the onsite visit:

  • Formaldehyde (HCHO)
  • VOCs (Volatile Organic Compounds)
  • Carbon Dioxide (CO2) – measurement of fresh air dilution that tracks with VOCs
  • Carbon Monoxide (CO) – a dangerous from combustion byproducts
  • Respirable Dust Particles in PM2.5 (fine) and PM10 (coarse) size regimes
  • Oxygen Levels
  • HEPA Filtration and other central air purifier efficiency (MERV Rating)
  • Pressure differentials between inside and outside (affects contamination potential)
  • Relative ventilation levels – critical to know in newer homes that are tightly built

Optional Testing

  • Mold Testing & Inspection including air samples, tape lifts and visual inspection
  • Bacterial, Microorganism, Parasite & Bio-Film issues
  • Radon Rn-222 Levels (alpha emitter lung carcinogen found in Texas including Dallas)
  • Ozone levels testing – ozone is a oxidizing respiratory irritant
  • Hydrogen Sulfide (H2S) – toxic sewer gas that has a foul odor
  • City of Dallas Green Ordinance Post Construction IAQ Clearance Sampling for 804.2

along with atmospheric factors such as:

  • Temperature
  • Relative Humidity
  • Absolute Humidity
  • Mixing Ratio, Vapor Pressure, Dew Point
  • Barometric Pressure (to judge whether the structure is under positive or negative pressure with respect to the outside air)

Many residents of the Dallas / Fort Worth area suffer from the following symptoms, ailments, and diseases – much of which can be traced either directly to air quality and composition or is exacerbated by poor air quality:

  • Allergies & Sinus Infections – (high particulate counts and VOCs, formaldehyde)
  • Chronic Allergic Rhinitis – (bio-aerosols)
  • Eye irritation – (formaldehyde, hydrogen sulfide, VOCs)
  • Congestion – (high particulate counts and VOCs, formaldehyde)
  • Inflammation – (formaldehyde, VOCs)
  • Fatigue – (carbon monoxide, carbon dioxide)
  • Insomnia
  • Headaches – (carbon monoxide)
  • Dizziness – (carbon monoxide)
  • Cognitive issues including difficulty focusing
  • Nausea
  • Coughing – (high particulate counts, mold, MVOCs)
  • Asthma & other breathing difficulties – (MVOCs, high particulate counts, ozone)
  • Bronchitis – (irritation of the lung bronchi)

These issues can contribute to and/or be symptomatic of more serious ailments such as:

  • COPD (Chronic Obstructive Pulmonary Disease)
  • Hypersensitivity Pneumonitis
  • Carbon Monoxide / Carbon Dioxide Poisoning
  • Autoimmune Disease
  • Cardiovascular Disease
  • Stroke
  • Lung Cancer
  • Leukemia
  • Non-Hodgkin’s Lymphoma
  • Neurological issues due to chemical exposure and/or oxygen deprivation

In many cases, a simple series of air quality tests that detect and report important metrics such as respirable particle levels, VOCs, formaldehyde levels, radon gas, carbon monoxide, carbon dioxide, oxygen levels, etc. can narrow down the issue(s) responsible. Very often, mitigation is relatively inexpensive and well worth the modest investment.

While ScanTech can make suggestions on how to clean up your air, we are not an equipment vendor or installer, so there is no conflict of interest in selling you products that you don’t need. (or that may make things worse)

ScanTech Residential Service Area Map Dallas and Fort Worth

ScanTech Residential Service Area Map Dallas and Fort Worth

Cities for radon / indoor air quality inspection services include: Dallas, Fort Worth, Houston, Austin, San Antonio, Plano, Highland Park, University Park, Park Cities, Arlington, Grapevine, Frisco, Denton, McKinney, Allen, Lewisville, Irving, Mesquite, Bedford, Euless, Richardson, Coppell, Grand Prairie, Garland, Addison, Farmers Branch, Rockwall, Carrollton, Parker, Rowlett, Lucas, Fairview, Park Cities, Keller, Roanoke, The Colony, Highland Village, Lake Dallas, Corinth, Prosper, Duncanville, Lancaster, Rowlett, Royse City, Trophy Club, Southlake and Hurst. Counties served include Dallas, Collin, Denton, Tarrant and Rockwall County.

Air Quality TVOC (Total Volatile Organic Compound Theory) and Health Effects

It is a widely held belief in the environmental health sciences community that exposures to individual VOCs and SVOCs (Semi-Volatile Organic Compunds) in indoor environments ARE NOT the sole factor for health issues and symptoms so much as the COMBINATION of the chemicals in question. This is the basis for what indoor air quality scientists call “TVOC Theory”.

While exposures to VOCs tend to be at levels significantly lower (by two or more orders of magnitude) than safety precautions (PELs and TLVs) outlined by health advisory bodies such as the ACGIH and OSHA, it is believed that there is a synergistic (additive and multiplicative) effect caused by the combined chemical loading of the hundreds of different organic chemicals which may result in symptomology and even a condition known as Sick Building Syndrome. (SBS) This is what would be called in engineering parlance, a parametric (multiple factor) failure with no single chemical being solely responsible for illness.

TVOC Table for Environmental Illness Effects from Indoor Air Quality Issues

Dose Response Model Relationship between TVOC levels and Health Effects  (Toluene Equivalent) with 5 mg/m^3 and 25 mg/m^3 approximately equivalent to 1 ppmv and 5 ppmv toluene equivalent. Effect threshold for acute effects with exposure to sub-mixtures of 6-9 VOCs are less than 1.7 mg/m^3.

The biological mechanism for this phenomena is linked to the stimulation of the trigeminal nerve system which is also known as the “common chemical sense”. This system is one of two olfactory (smell) mechanisms by which humans respond to odor. The chemical sense organ consists of trigeminal nerves in the nasal cavity and eyes as well as the facial skin areas. Stimulation of these nerves produces irritation which includes burning, stinging and smarting. Other effects include changes in heart and respiratory rates, as well as coughing, sneezing and tearing up of the eyes.

TVOC theory is more an indicator of the risk of nonspecific sensory irritation to relatively unreactive VOCs as opposed to a generic indicator of the potential health risks of contaminated indoor air quality.

Total VOC Volatile Organic Compound Chart for Indoor Air Quality

TVOC Dose Symptom Relationship Log Chart

A log-linear relationship between symptom prevalence rates and concentrations of terpenes, n-alkanes (C8-C11) and butanols in problem buildings. ScanTech checks for TVOCs in the Dallas, Fort Worth, Houston and Austin metropolitan areas.

More information can be found in this European report:

TVOC Indoor Air Quality Investigations

Indoor Air Quality Testing: Oxygen Levels and Oxygen Deprivation Effects

One metric that is commonly overlooked in air quality studies is the oxygen percentage in the indoor environment with respect to normal atmospheric composition and how sensitive the human body is to this level. The oxygen levels on present day 21st Century Earth are nominally 20.9 % IF the relative humidity is 0%. (only found in extremely arid regions or dehumidified rooms such as an attic in summer) At one time in the distant past (the days of the dinosaurs) the oxygen levels on Earth were as high as 35 %.

The water vapor in the air displaces oxygen to some extent, so the more humid the air, the lower the % of oxygen. Here is a chart for reference:

Oxygen Level by Relative Humidity - Indoor Air Quality Factor

Oxygen Level by Relative Humidity

The body (particularly the brain) requires oxygen to function because it is a critical component in the cellular respiration process. (also known as the Krebs or Citric Acid Cycle) There are 42 steps in this cycle, and oxygen comes in at the last stage to combine with the H+ hydrogen proton gradient built up in the mitochondria (the “power plant” which is the main producer of ATP – also known as adenosine triphosphate which is the “energy currency” of biological organisms) of cells. Oxygen combined with hydrogen forms water which is the desired byproduct. Without it, the hydrogen atoms would drive the pH balance to a dangerously acidic level and denature proteins and kill all cellular functions.

Hypoxia - Indoor Air Oxygen Levels Deprivation Effects Toxicity Table

Hypoxia – Oxygen Levels Deprivation Effects Toxicity Table

Notice that the safe range of oxygen is from 19.5 – 23.5 % which is only a 4 point percentage window. This illustrates how narrow the levels are between too much and too little oxygen. Too much oxygen (oxygen toxicity) can slow breathing levels to a rate that does not displace enough carbon dioxide (CO2) – a condition known as carbon dioxide narcosis. This typically only occurs when too much oxygen from a supplemental system such as tanks used in scuba diving or medical breathing equipment that is not adjusted correctly. This is virtually never an indoor air quality issue, but it is mentioned here to illustrate that even chemicals typically considered harmless or helpful can have dangerous effects at high enough levels.

So why would oxygen deprivation be an issue – aren’t oxygen levels homogeneous everywhere?

Not necessarily.

Areas with more forestation and foliage typically have higher levels of oxygen than outlying scrub prairies, but more to the point, deep urban environments often suffer from a shortage of oxygen for several reasons:

  • Lack of oxygen emitting plants and trees
  • High consumption of oxygen by dense populations such as found in heavily urbanized cites like Houston, Austin, the Dallas / Fort Worth region, etc. vehicles and other combustion motors
  • Oxidation / formation of chemicals that bind up oxygen molecules such as sulfur dioxides and nitrogen oxides
  • Displacement of oxygen by other gases and vapors such as water vapor, carbon dioxide, etc.

This is why particularly in downtown environments or near other heavily trafficked / polluted areas it is a good idea to know how much oxygen is being received as the chart above demonstrates that even a drop of 1 % or so (say 20.1% to 19.1%) can induce the subtle but deleterious effects of hypoxia.

To quote the early physician / alchemist Paracelsus: ” Poison is in everything, and no thing is without poison. The dosage makes it either a poison or a remedy.”